1. Write the equation of the line passing through \((0, 0)\) with normal \(n = (3, 2)\).

2. Write the equation of the line passing through \((1, 0)\) in direction of \(d = (-1, 3)\).

3. Find the vector form of the equation of the line in \(\mathbb{R}^2\) that passes through \((2, -1)\) and is parallel to the line with general equation \(2x - 3y = 1\).

4. Show that in \(\mathbb{R}^2\), the distance between parallel lines with equations \(n \cdot x = c_1\) and \(n \cdot x = c_2\) is given by \(\frac{|c_1 - c_2|}{||n||}\).

5. Show that the distance \(d(p, P)\) from the point \(B = (x_0, y_0, z_0)\) to the plane \(P\) whose general equation is given by \(ax + by + cz = d\) is given by \(\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}\).